Share & Earn


Diabetes: Experimental drug may help restore insulin-producing cells

0 2 years ago

In the United States, approximately 1 in 10 people had diabetes in 2018, which makes diabetes the nation’s seventh leading cause of death.

There are two major types of diabetes:

  • Type 1 (formerly known as insulin-dependent or juvenile diabetes) – The body does not produce the hormone insulin or makes very little of it. This form of diabetes is more common in children and young adults.
  • Type 2 (formerly known as adult-onset diabetes) – The body does not produce enough or cannot properly use insulin. It is the most common form of diabetes (90–95% of all cases) and often begins later in life.

Insulin-producing beta-cells typically make up 50-70% of pancreatic islets (groups of cells in the pancreas). In both types of diabetes, there is a significant reduction in beta-cells primarily due to autoimmune destruction.

Individuals with Type 1 diabetes, and some people with Type 2 diabetes, must take insulin injections daily to survive. The alternative is whole pancreas or pancreatic islet transplantation, which is limited by the shortage of organ donors and the associated side effects of immunosuppressants.

Research into the regeneration of insulin-producing beta-cells could lead to developing a new therapy for individuals who rely on insulin injections.

In a recent study, the human epigenetics team at Monash University in Melbourne, Australia, found that the investigational drug GSK-126 can potentially restore insulin-producing beta-cells in Type 1 diabetes patients by inhibiting pancreatic EZH2.

Restoring insulin production

The EZH2 enzyme inhibits genes responsible for the development of insulin-producing beta-cells. The researchers hypothesized that blocking EZH2 activity may restore insulin production.

The researchers examined the effect of the highly selective EZH2 inhibitor GSK-126 on specific genes related to insulin production using ex vivo human pancreatic tissues from three donors, two non-diabetic and one Type 1 diabetes donor.

When the researchers analyzed the pancreas from the Type 1 diabetes donor, as expected, they noted absolute beta-cell destruction. The genes that regulate beta-cell development and insulin production in these pancreatic cells were “silenced.”

The researchers found that stimulating the pancreatic cells with GSK-126 could restore the hallmark genes responsible for developing pancreatic progenitor cells (stem cell-like cells) into insulin-producing beta-cells.


Leave a Comment

Your email address will not be published. Required fields are marked *